Do You Need PUT and PATCH?

Conventional wisdom says that REST APIs should be implemented as follows:

  • GET – read
  • POST – add
  • PUT/PATCH – modify
  • DELETE – remove

This mostly works well. Query parameters can be used to supply arguments for GET and DELETE operations. POSTs can use either URL-encoded or multipart form data, standard encodings supported by nearly all HTTP clients.

However, it doesn’t work quite as well for PUT or PATCH. PUT has no standard encoding, and requires the entire resource to be sent in the payload. PATCH was introduced as a workaround to this limitation, but it also lacks a standard encoding, and is not supported by all clients (notably Java).

However, the POST method can also be used to modify resources. The semantics of POST are less strict than PUT, so it can support partial updates, like PATCH. Further, the same encoding used for creating resources (URL-encoded or multipart) can also be used for updates.

For example:

  • POST /products – add a new resource to the “products” collection using the data specified in the request body
  • POST /products/101 – update the existing resource with ID 101 in the products collection using the (possibly partial) data specified in the request body

This approach works particularly well when resources are backed by relational database tables. An “add” POST maps directly to a SQL INSERT operation, and a “modify” POST translates to a SQL UPDATE. The key/value pairs in the body (whether URL-encoded or multipart) can be mapped directly to the table columns.

The approach also supports bulk inserts and updates. POSTing a URL-encoded payload works well for individual records, but JSON, CSV, or XML could easily be used to add or update multiple records at a time.

So, do you really need PUT and PATCH? Given that POST is more flexible, better supported, and can handle both create and update operations, I’d say no. Please share your thoughts in the comments!

Caching Web Service Response Data in iOS

11/13/2018 Updated for Xcode 10/Swift 4.2

Many iOS applications obtain data via web APIs that return JSON documents. For example, the following table view controller uses the Kilo WebServiceProxy class to invoke a simple web service that returns a simulated list of users as JSON. The controller requests the user list when the view first appears, and reloads the table view once the data has been retrieved:

class ViewController: UITableViewController {
    var users: [User]?

    override func viewWillAppear(_ animated: Bool) {
        super.viewWillAppear(animated)
    
        // Load user data
        if (users == nil) {
            let serviceProxy = WebServiceProxy(session: URLSession.shared, serverURL: URL(string: "https://jsonplaceholder.typicode.com")!)
    
            serviceProxy.invoke(.get, path: "/users") { (result: [User]?, error: Error?) in
                if (error == nil) {
                    self.users = result ?? []
    
                    self.tableView.reloadData()
                }        
            }
        }
    }
    
    ...
}

User records are represented by instances of the following structure:

struct User: Codable {
    struct Address: Codable {
        let street: String
        let suite: String
        let city: String
        let zipcode: String

        struct Geo: Codable {
            let lat: String
            let lng: String
        }

        let geo: Geo
    }

    struct Company: Codable {
        let name: String
        let catchPhrase: String
        let bs: String
    }

    let id: Int
    let name: String
    let username: String
    let email: String
    let address: Address
    let phone: String
    let website: String
    let company: Company
}

The results are shown below:

This works fine when both the device and the service are online, but it fails if either one is not. In some cases this may be acceptable, but other times it might be preferable to show the user the most recent response when more current data is not available.

To facilitate offline support, the response data must be cached. However, since writing to the file system is a potentially time-consuming operation, it should be done in the background to avoid blocking the main (UI) thread. Here, the data is written using an operation queue to ensure that access to it is serialized:

class ViewController: UITableViewController {
    var userCacheURL: URL?
    let userCacheQueue = OperationQueue()

    var users: [User]?

    override func viewDidLoad() {
        super.viewDidLoad()

        title = "Response Data Cache"

        tableView.estimatedRowHeight = 2
        tableView.register(UserCell.self, forCellReuseIdentifier: UserCell.description())

        if let cacheURL = FileManager.default.urls(for: .cachesDirectory, in: .userDomainMask).first {
            userCacheURL = cacheURL.appendingPathComponent("users.json")
        }
    }

    override func viewWillAppear(_ animated: Bool) {
        super.viewWillAppear(animated)

        // Load user data
        if (users == nil) {
            let serviceProxy = WebServiceProxy(session: URLSession.shared, serverURL: URL(string: "https://jsonplaceholder.typicode.com")!)

            serviceProxy.invoke(.get, path: "/users") { (result: [User]?, error: Error?) in
                if (error == nil) {
                    self.users = result ?? []

                    self.tableView.reloadData()

                    // Write the response to the cache
                    if let userCacheURL = self.userCacheURL {
                        self.userCacheQueue.addOperation() {
                            let jsonEncoder = JSONEncoder()

                            if let data = try? jsonEncoder.encode(self.users) {
                                try? data.write(to: userCacheURL)
                            }
                        }
                    }
                } else {
                    ...
                }
            }
        }
    }
    
    ...
}

Finally, the data can be retrieved from the cache if the web service call fails. The data is read from the cache in the background, and the UI is updated by reloading the table view on the main thread:

class ViewController: UITableViewController {
    ...

    override func viewWillAppear(_ animated: Bool) {
        super.viewWillAppear(animated)

        // Load user data
        if (users == nil) {
            let serviceProxy = WebServiceProxy(session: URLSession.shared, serverURL: URL(string: "https://jsonplaceholder.typicode.com")!)

            serviceProxy.invoke(.get, path: "/users") { (result: [User]?, error: Error?) in
                if (error == nil) {
                    ...
                } else {
                    // Read the data from the cache
                    if let userCacheURL = self.userCacheURL {
                        self.userCacheQueue.addOperation() {
                            let jsonDecoder = JSONDecoder()

                            if let data = try? Data(contentsOf: userCacheURL) {
                                self.users = (try? jsonDecoder.decode([User].self, from: data)) ?? []

                                // Update the UI
                                OperationQueue.main.addOperation() {
                                    self.tableView.reloadData()
                                }
                            }
                        }
                    }
                }
            }
        }
    }
    
    ...
}

Now, as long as the application has been able to connect to the server at least once, it can function either online or offline, using the cached response data.

Complete source code for this example can be found here.