HTTP-RPC 4.0 Released

HTTP-RPC 4.0 is now available for download. This release adds support for application/x-www-form-urlencoded and application/json request encodings. In addition to submitting request arguments as multipart/form-data, client applications can now POST arguments as URL-encoded key/value pairs and POST or PUT argument values as JSON.

For example, the following Java code would submit a JSON-encoded POST request to the resource located at /example:

serviceProxy.setEncoding(WebServiceProxy.APPLICATION_JSON);

serviceProxy.invoke("POST", "/example", mapOf(
    entry("string", "hello"),
    entry("number", 123),
    entry("flag", true)), (result, exception) -> {
    // ...
});

In Swift, the code might look like this:

serviceProxy.encoding = WSApplicationJSON

serviceProxy.invoke("POST", path: "/example", arguments: [
    "string": "hello",
    "number": 123,
    "flag": true
    ]) { result, error in
    // ...
}

In either case, the body of the request would contain the following:

{
  "string": "hello",
  "number": 123,
  "flag": true
}

For more information, see the project README.

Named Parameters in JDBC Queries

Prepared statements are a common way to execute parameterized queries in JDBC. For example, the following SQL might be used to retrieve a list of all users whose first or last name matches a particular character sequence:

SELECT * FROM user WHERE first_name LIKE ? or last_name LIKE ?

Parameter values are supplied at runtime via indexed setter methods defined by the PreparedStatement class:

statement.setString(1, pattern);
statement.setString(2, pattern);

This works fine for simple queries, but it becomes increasingly difficult to manage as the number of parameters grows. It is also redundant – although this query only requires a single argument, two parameter values must be supplied.

The Java Persistence API (JPA) provides a more convenient alternative using named parameters. For example, the above query might be written as follows in JPQL:

SELECT u FROM User u WHERE u.firstName LIKE :pattern or u.lastName LIKE :pattern

This is more readable and less verbose, as the caller only needs to provide the value of the "pattern" parameter once. It is also more resilient to changes, as the arguments are not dependent on ordinal position. Unfortunately, it requires a JPA-compliant object-relational mapping (ORM) framework such as Hibernate, a dependency that may not be satisfiable in all situations.

The org.jtemplate.sql.Parameters class provided by the JTemplate framework brings named parameter support to JDBC. The parse() method of this class is used to create a Parameters instance from a JPA-like SQL query; for example:

SELECT * FROM user WHERE first_name LIKE :pattern or last_name LIKE :pattern

It takes a string or reader containing the query text as an argument:

Parameters parameters = Parameters.parse(sqlReader);

The getSQL() method of the Parameters class returns the processed query in standard JDBC syntax. This value can be used in a call to Connection#prepareStatement():

PreparedStatement statement = connection.prepareStatement(parameters.getSQL());

Parameter values are specified via the put() method:

parameters.put("pattern", pattern);

The values are applied to the statement via the apply() method:

parameters.apply(statement);

Once applied, the query can be executed:

ResultSet resultSet = statement.executeQuery();

Note that Parameters is not limited to queries; it can also be used for updates.

A complete example using the Parameters class can be found here. It is a simple REST service that allows a caller to search a database of pets by owner name.

See the JTemplate documentation for more information.

JTemplate: Data-Driven Presentation Templates for Java

Templates are documents that describe an output format such as HTML, XML, or CSV. They allow the ultimate representation of a data structure to be specified independently of the data itself, promoting a clear separation of responsibility.

The CTemplate system defines a set of "markers" that are replaced with values supplied by the data structure (which CTemplate calls a "data dictionary") when a template is processed. In JTemplate, the data dictionary is provided by an instance of java.util.Map whose entries represent the values supplied by the dictionary.

For example, the contents of the following map might represent the result of some simple statistical calculations:

{
    "count": 3, 
    "sum": 9.0,
    "average": 3.0
}

A template for transforming this data into HTML is shown below:

<html>
<head>
    <title>Statistics</title>
</head>
<body>
    <p>Count: {{count}}</p>
    <p>Sum: {{sum}}</p>
    <p>Average: {{average}}</p> 
</body>
</html>

At execution time, the "count", "sum", and "average" markers are replaced by their corresponding values from the data dictionary, producing the following markup:

<html>
<head>
    <title>Statistics</title>
</head>
<body>
    <p>Count: 3</p>
    <p>Sum: 9.0</p>
    <p>Average: 3.0</p> 
</body>
</html>

TemplateEncoder Class

JTemplate provides the TemplateEncoder class for merging a template document with a data dictionary. Templates are applied using one of the following TemplateEncoder methods:

public void writeValue(Object value, OutputStream outputStream) { ... }
public void writeValue(Object value, OutputStream outputStream, Locale locale) { ... }
public void writeValue(Object value, Writer writer) { ... }
public void writeValue(Object value, Writer writer, Locale locale) { ... }

The first argument represents the value to write (i.e. the data dictionary), and the second the output destination. The optional third argument represents the locale for which the template will be applied. If unspecified, the default locale is used.

For example, the following code snippet applies a template named map.txt to the contents of a data dictionary whose values are specified by a hash map:

HashMap<String, Object> map = new HashMap<>();

map.put("a", "hello");
map.put("b", 123");
map.put("c", true);

TemplateEncoder encoder = new TemplateEncoder(getClass().getResource("map.txt"), "text/plain");

String result;
try (StringWriter writer = new StringWriter()) {
    encoder.writeValue(map, writer);

    result = writer.toString();
}

System.out.println(result);

If map.txt is defined as follows:

a = {{a}}, b = {{b}}, c = {{c}}

this code would produce the following output:

a = hello, b = 123, c = true

Additional Information

This article introduced the JTemplate framework and provided a brief overview of its key features.

The latest JTemplate release can be downloaded here. For more information, see the project README.

Creating a Simple Android REST Client Using HTTP-RPC

HTTP-RPC is an open-source framework for simplifying development of REST applications. It allows developers to access REST-based web services using a convenient, RPC-like metaphor while preserving fundamental REST principles such as statelessness and uniform resource access.

The project currently includes support for consuming web services in Objective-C/Swift, Java, and JavaScript. It provides a consistent client API that makes it easy to interact with services regardless of target device or operating system.

This article provides a demonstration of how the HTTP-RPC Java client library can be used to invoke services provided by JSONPlaceholder, a "fake online REST API", in Android.

Service API

JSONPlaceholder offers a collection of web services that simulate common REST operations on a variety of resource types such as "albums", "photos", and "users". For example, the following URL retrieves a JSON document containing a list of simulated user records:

https://jsonplaceholder.typicode.com/users

The document is similar to the following:

[
  {
    "id": 1,
    "name": "Leanne Graham",
    "username": "Bret",
    "email": "Sincere@april.biz",
    "address": {
      "street": "Kulas Light",
      "suite": "Apt. 556",
      "city": "Gwenborough",
      "zipcode": "92998-3874",
      "geo": {
        "lat": "-37.3159",
        "lng": "81.1496"
      }
    },
    "phone": "1-770-736-8031 x56442",
    "website": "hildegard.org",
    "company": {
      "name": "Romaguera-Crona",
      "catchPhrase": "Multi-layered client-server neural-net",
      "bs": "harness real-time e-markets"
    }
  },
  ...
]

Additionally, the service provides a collection of simulated discussion posts, which can be retrieved on a per-user basis as follows:

https://jsonplaceholder.typicode.com/posts?userId=1

For example:

[
  {
    "userId": 1,
    "id": 1,
    "title": "sunt aut facere repellat provident occaecati excepturi optio reprehenderit",
    "body": "quia et suscipit\nsuscipit recusandae consequuntur expedita et cum\nreprehenderit molestiae ut ut quas totam\nnostrum rerum est autem sunt rem eveniet architecto"
  },
  {
    "userId": 1,
    "id": 2,
    "title": "qui est esse",
    "body": "est rerum tempore vitae\nsequi sint nihil reprehenderit dolor beatae ea dolores neque\nfugiat blanditiis voluptate porro vel nihil molestiae ut reiciendis\nqui aperiam non debitis possimus qui neque nisi nulla"
  },
  ...
]

Sample Application

The sample application presents two views. The first one displays a list of users:

The second displays a list of posts by the selected user:

WebServiceProxy Class

The WebServiceProxy class is used to invoke service operations. Internally, it uses an instance of HttpURLConnection to send and receive data. Response data is deserialized automatically into appropriate Java types including String, Number, Boolean, List, and Map.

Service operations are initiated by calling the invoke() method, which takes the following arguments:

  • method – the HTTP method to execute
  • path – the resource path
  • arguments – a map containing the request arguments as key/value pairs
  • resultHandler – an instance of ResultHandler that will be invoked upon completion of the service operation

A convenience method is also provided for executing operations that don't take any arguments.

Arguments are passed to the service either via the query string or in the request body, like an HTML form. List arguments represent multi-value parameters and are handled similarly to <select multiple> tags in HTML.

The result handler is a callback that is invoked upon completion of the request. If successful, the first argument will contain the value returned by the server. Otherwise, the first argument will be null, and the second will contain an exception representing the error that occurred.

For example, the following code might be used to invoke an operation that returns the sum of two numbers, specified by the "a" and "b" arguments. The static mapOf() and entry() methods are provided by the WebServiceProxy class to simplify argument map creation:

// Get sum of "a" and "b"
serviceProxy.invoke("GET", "/math/sum", mapOf(entry("a", 2), entry("b", 4)), (result, exception) -> {
    // result is 6
});

ExampleApplication Class

An instance of WebServiceProxy is created by the example application at startup:

private static WebServiceProxy serviceProxy;

public static WebServiceProxy getServiceProxy() {
    return serviceProxy;
}

@Override
public void onCreate() {
    super.onCreate();

    URL serverURL;
    try {
        serverURL = new URL("https://jsonplaceholder.typicode.com");
    } catch (MalformedURLException exception) {
        throw new RuntimeException(exception);
    }

    serviceProxy = new WebServiceProxy(serverURL, Executors.newSingleThreadExecutor()) {
        private Handler handler = new Handler(Looper.getMainLooper());

        @Override
        protected void dispatchResult(Runnable command) {
            handler.post(command);
        }
    };
}

The user and post activities discussed below use this proxy to invoke their respective service operations.

UserActivity Class

The UserActivity class is responsible for presenting the list of users returned from /users. Internally, it maintains a collection of objects representing the user list. In onResume(), if the list has not already been loaded, it uses the service proxy to retrieve the user list from the server:

public class UserActivity extends AppCompatActivity {
    private ListView userListView;

    private List<Map<String, ?>> userList = null;

    private BaseAdapter userListAdapter = new BaseAdapter() {
        ...
    };

    private static String TAG = UserActivity.class.getName();

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);

        setContentView(R.layout.activity_main);

        userListView = (ListView)findViewById(R.id.user_list_view);

        userListView.setOnItemClickListener((parent, view, position, id) -> {
            Intent intent = new Intent(UserActivity.this, PostActivity.class);

            intent.putExtra(PostActivity.USER_ID_KEY, id);

            startActivity(intent);
        });
    }

    @Override
    protected void onResume() {
        super.onResume();

        if (userList == null) {
            ExampleApplication.getServiceProxy().invoke("GET", "/users",
                (List<Map<String, ?>> result, Exception exception) -> {
                if (exception == null) {
                    userList = result;

                    userListView.setAdapter(userListAdapter);
                } else {
                    Log.e(TAG, exception.getMessage());
                }
            });
        }
    }
}

A list adapter is used to present the user details for each row:

private BaseAdapter userListAdapter = new BaseAdapter() {
    @Override
    public int getCount() {
        return userList.size();
    }

    @Override
    public Object getItem(int position) {
        return userList.get(position);
    }

    @Override
    public long getItemId(int position) {
        return ((Number)userList.get(position).get("id")).longValue();
    }

    @Override
    public View getView(int position, View convertView, ViewGroup parent) {
        if (convertView == null) {
            convertView = getLayoutInflater().inflate(R.layout.item_user, null);
        }

        Map<String, ?> note = userList.get(position);

        String name = (String)note.get("name");

        TextView nameTextView = (TextView)convertView.findViewById(R.id.name_text_view);
        nameTextView.setText(name);

        String email = (String)note.get("email");

        TextView emailTextView = (TextView)convertView.findViewById(R.id.email_text_view);
        emailTextView.setText(email);

        return convertView;
    }
};

PostActivity Class

When a user is selected, an instance of PostActivity is presented. This class is responsible for presenting the list of user posts returned from /posts. Like UserActivity, it maintains a collection of objects representing the server response, and populates the list in onResume():

public class PostActivity extends AppCompatActivity {
    private ListView postListView;

    private List<Map<String, ?>> postList = null;

    private BaseAdapter postListAdapter = new BaseAdapter() {
        ...
    };

    public static final String USER_ID_KEY = "userID";

    private static String TAG = PostActivity.class.getName();

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);

        setContentView(R.layout.activity_post);

        postListView = (ListView)findViewById(R.id.post_list_view);
    }

    @Override
    protected void onResume() {
        super.onResume();

        if (postList == null) {
            long userID = getIntent().getLongExtra(USER_ID_KEY, 0);

            ExampleApplication.getServiceProxy().invoke("GET", "/posts", mapOf(entry("userId", userID)),
                (List<Map<String, ?>> result, Exception exception) -> {
                if (exception == null) {
                    postList = result;

                    postListView.setAdapter(postListAdapter);
                } else {
                    Log.e(TAG, exception.getMessage());
                }
            });
        }
    }
}

Again, a list adapter is used to present the details for each row:

private BaseAdapter postListAdapter = new BaseAdapter() {
    @Override
    public int getCount() {
        return postList.size();
    }

    @Override
    public Object getItem(int position) {
        return postList.get(position);
    }

    @Override
    public long getItemId(int position) {
        return ((Number)postList.get(position).get("id")).longValue();
    }

    @Override
    public View getView(int position, View convertView, ViewGroup parent) {
        if (convertView == null) {
            convertView = getLayoutInflater().inflate(R.layout.item_post, null);
        }

        Map<String, ?> note = postList.get(position);

        String title = (String)note.get("title");

        TextView titleTextView = (TextView)convertView.findViewById(R.id.title_text_view);
        titleTextView.setText(title);

        String body = (String)note.get("body");

        TextView bodyTextView = (TextView)convertView.findViewById(R.id.body_text_view);
        bodyTextView.setText(body);

        return convertView;
    }
};

More Information

This article provided a demonstration of how the HTTP-RPC Java client library can be used to build a simple Android REST client application. The complete source code for the sample application can be found here.

The latest version of HTTP-RPC can be downloaded here. For more information, see the project README.

HTTP-RPC: A Lightweight Multi-Platform REST Client Framework

HTTP-RPC is an open-source framework for simplifying development of REST applications. It allows developers to access REST-based web services using a convenient, RPC-like metaphor while preserving fundamental REST principles such as statelessness and uniform resource access.

The project currently includes support for consuming web services in Objective-C/Swift and Java (including Android). It provides a consistent, callback-based API that makes it easy to interact with services regardless of target device or operating system.

This article introduces the HTTP-RPC framework and provides an overview of some of its key features.

Service Operations

Services are accessed by applying an HTTP verb such as GET or POST to a target resource. The target is specified by a path representing the name of the resource, and is generally expressed as a noun such as /calendar or /contacts.

Arguments are provided either via the query string or in the request body, like an HTML form. Results are typically returned as JSON; however, image and text content is also supported. Service operations may also return no value.

For example, the following request might retrieve the sum of two numbers, whose values are specified by the a and b query arguments:

GET /math/sum?a=2&b=4

Alternatively, the argument values could be specified as a list rather than as two fixed variables:

GET /math/sum?values=1&values=2&values=3

In either case, the service would return the value 6 in response.

Client Implementations

The iOS client is distributed as a universal framework that is about 500KB in size and has no external dependencies. The Java client is packaged as a JAR file that is only 22KB in size and also has no dependencies.

The following examples demonstrate how the various client libraries can be used to invoke the operations of the hypothetical math service discussed in the previous section. Each example creates an instance of a platform-specific service proxy, then executes the service requests by specifying the HTTP method, resource path, method arguments, and a result handler that will be invoked on completion of the method. Note that the static mapOf() and entry() methods used in the Java example are provided by the WebServiceProxy class to help simplify argument map creation:

Swift

// Create service proxy
let serviceProxy = WSWebServiceProxy(session: URLSession.shared, serverURL: URL(string: "https://localhost:8443")!)

// Get sum of "a" and "b"
serviceProxy.invoke("GET", path: "/math/sum", arguments: ["a": 2, "b": 4]) {(result, error) in
    // result is 6
}

// Get sum of all values
serviceProxy.invoke("GET", path: "/math/sum", arguments: ["values": [1, 2, 3, 4]]) {(result, error) in
    // result is 6
}

Java

// Create service proxy
WebServiceProxy serviceProxy = new WebServiceProxy(new URL("https://localhost:8443"), Executors.newFixedThreadPool(10));

// Get sum of "a" and "b"
serviceProxy.invoke("GET", "/math/sum", mapOf(entry("a", 2), entry("b", 4)), (result, exception) -> {
    // result is 6
});

// Get sum of all values
serviceProxy.invoke("GET", "/math/sum", mapOf(entry("values", listOf(1, 2, 3))), (result, exception) -> {
    // result is 6
});

Although the examples are written in different programming languages, they are all structurally similar and demonstrate identical behavior.

More Information

This article introduced the HTTP-RPC framework and provided an overview of some of its key features. The latest HTTP-RPC release can be downloaded here. For more information, see the project README.

Regular Expression to Validate a Comma-Separated List of Email Addresses

Recently, I needed to create a regular expression to validate the format of a comma-separated list of email addresses. Just thought I’d share the result in case it is of use to anyone. The pattern I came up with for matching a single address is as follows:

[\w-]+(\.[\w-]+)*@[\w-]+(\.[\w-]+)+

Note that I didn’t attempt to handle every possible combination of valid characters – only what I’d consider the most common ones.

The pattern is simply duplicated for the comma-separated list. Here’s an example of applying the pattern in Java:

Pattern addressListPattern = Pattern.compile(String.format("%1$s(,\\s*%1$s)*",
    "[\\w-]+(\\.[\\w-]+)*@[\\w-]+(\\.[\\w-]+)+"),
    Pattern.UNICODE_CHARACTER_CLASS);

System.out.println(addressListPattern.matcher("xyz").matches()); // false
System.out.println(addressListPattern.matcher("foo@bar.com").matches()); // true
System.out.println(addressListPattern.matcher("foo@bar.com, xyz").matches()); // false
System.out.println(addressListPattern.matcher("foo@b-ar.com, f.oo@b-ar.co.uk").matches()); // true
System.out.println(addressListPattern.matcher("føo@b-ar.com, f-oo@b-ar.co.uk").matches()); // true

Note that Pattern.UNICODE_CHARACTER_CLASS is not necessary (or supported) in Android, which supports Unicode character matching by default.

Hope it helps!

Java I/O Annoyances

While making some code updates the other day, I discovered a couple of potentially confusing features of the java.io package that I wasn't previously aware of:

  1. The PrintStream and PrintWriter classes consume exceptions. From the PrintWriter documentation:

    Methods in this class never throw I/O exceptions, although some of its constructors may. The client may inquire as to whether any errors have occurred by invoking checkError().

    Because I had incorrectly assumed that a PrintWriter would propagate any exceptions thrown by the underlying stream, I hadn't been calling checkError(). The result was that my servlet class, which was using the print writer returned by ServletResponse#getWriter(), failed to detect when a connection had been terminated by the client. The servlet simply continued writing to the output stream. Once I started calling checkError(), the response was correctly terminated:

    if (writer.checkError()) {
        throw new IOException("Error writing to output stream.");
    }

    I couldn't find any explanation as to why these two classes were written this way, while all of the other classes in java.io appear to simply propagate exceptions.

  2. The read(byte[], int, int) method of the InputStream class also consumes exceptions. From the Javadoc:

    The read(b, off, len) method for class InputStream simply calls the method read() repeatedly. If the first such call results in an IOException, that exception is returned from the call to the read(b, off, len) method. If any subsequent call to read() results in a IOException, the exception is caught and treated as if it were end of file.

    This is extremely misleading, since it completely obscures the fact that an error occurred and makes it appear as though the stream terminated normally.

So, even though this behavior is not what I had expected, at least it is documented, and is something I'll now be aware of when using these classes in the future.